
-UNCLASSIFIED

SECURtITY CLASSIPICaTIOM oP THIlS PAGE

I T DOCUMENTATION PAG F
to If 1b. RSTRICTIVE MAR~qNG9. S

2461 A D-A 193 435 2. OISTV4I6UTIOftIAVAILA6ILITY OF REPORT

- Approved for Public Release; Distribution
us ýIw WP.F. - Unlimited

N/A MIR___________________
a. ERPRMIG RGAIZAIO NUEI [F S. MOITDORING ORGANIZA TION 0@EPORT NUMUER(SeM

716366 AF%0h 8-6D
G.NAME OF PIRPORMING ORGANIZATION IL OPFICG SV6MSOL I74 NAME OP AMON6ORlNG LRGANIZATION

Ohio State University AFOSR/NM
Research Foundation________ AORN

4k. AOORIMSS (City. Staf Imd ZIP Cl~aJ Vb ADDRESS ICae1 . S8ft wn W ZPCodeI

1314 Kinnear Rd. Bldg. 410
Columbus, OH 43212 Boiling AFB, DC 20332--6448

S&. MN"M Of PUNOINO/SPONSORING 0b. OFFICE SYMOGOL *.PROCUREMENT INSTRUMENT MOENTIPICAT ION NUMBER
ORGANIZATION a elf piceabJ

AFOSR J NM AFOSR-84-0162

ft. LVIOORS Iily~. Stem Iand ZIP code)1 10. SOURCe OF PUNOINO No$. ______ _____

Bldg. 410 PROGRAM PROJECT TAS K WORK UNIT

Boiling AFB, DC E LEMENT NO. NO.NON.

Analysis of Accelerated Life Testing With Step Stres

12. PERSONAL AUTWORIS1
M. H. DeGroot and Prem K. Goal

13&. TYPE Of REPORT 13b. TIME COVE RGO [I.GT PRPR r. m.~y) -IS. PAGE COUNT

~-IteT±V~- ,Ld~k PROM_ 7,1_84 T01/3/8 1986, 8, 20
16. SUPPLEMIENTARY NOTATIO~4

17. COSATi COOGS 16 SUEJECT TERM4S ICon SIn m onl jVr If nbff~gy @Rd Idaenify b 6,0C b4.* 'ombi

PIELO aROUP sue. GOR. Accelerated life test, step stress, optimal diesign,
xxxx XXXX XXXI Bayesian approach

ýAWTRACT Icena Sam. on oeewe ilo neee~ger end g4delflyby6 bjoe* neim~bepl

An accelerated life testing problem in which the stress s can take only a fixed, finite
numbar of values is known as accelerated life test with step stress. In general, the
item under test is Y-arted under the lowest streas first and if an item has not failed
until a certain specified time, then it is moved into the next level of stress. This
process is continued until the item fails. Thus the life test duration of the item is
shortened. A Bayesian formulation of the problem is given in this paper. It is assumed
that there are only two stress values under consideration (i) standard use environmental
condition (ii) a higher level of stress that is fixed in advance and is the saen for
all items to be test~ed. However, the time at which an item on test is taken out of
use environment and put under higher stress environment can be chosen by the erperimenter
subject to a cost structure. We consider the inference and the optimal design problem
of when the change the stress as the rest progress.,~,-

20 DISTRIIS UTION11/AVAILAGILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPI1O/UNLiMiT§O MSAME AS PIPT. El ot.C .,, -1 UNCLASSIFIED

X20. NAMIE OP REiSPtNSI§LE1 INDIVIDUAL 2211 TELEPHONE NUMOER 22.. OFFICE SYMBOL

Brian W. Woodroofe, Major, USAF lncluide A meCode)

N14 (202) 767-5025 AFOSR/NM

DO FORM 1473, 83 APR EDITION Of I &AN 73 IS OR1SOLETE. UNCLASSIFIED
SECUP14TY CLASSIPICATION OP THIS PAGE



AFOR.TUh 88-0648

BAYESIAN DESIGN AND ANALYSIS OF
ACCELERATED LIFE TESTING WITH STEP STRESS

by

MOP4IS H. DEGROOT* AND PREMK.-GOFL**

NTt S CkAX.1

L)
Technical Report No. 350

August 1986 ..l•, b•t;i)- ............................... .................

*Department of Statistics
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213 c z

**Department of Statistics "g'
Ohio State University
Columbus, Ohio 43210

To appear in Accelerated Life Testing and Expert Opinions in Reliability:
Proceedings of the International School of Physics "Enrico Fermi" (ed. by
D. V. Lindley and C. A. Clarotti). Amsterdam: North-Holland.

*Research supported in part by The National Science Foundation under
grant no. DMS-8320618.

**Research supported in part by The Air Force Office of Scientific Research,
Air Force Systems Command, USAF under contract number AFOSR-84-0162.
The U.S. Government I '.thorized to reproduce and distribute reprints for
GoveLnmental purpose twithstanding any copyright notation thereon.

B8 5 02' 259



1. Introduction

In many problems of life testing, the test proc2ss may

require an unacceptably long time period for its completion

If the test i& simply carried out under specified standard stress

conditions. In such problems, It Is generally possible to run

the life test under stresses that are higher than the specified

standard in order to acce.erate the process and shorten the

time to its completion. Th!3 process Is called accelerated

life testing. A few of the classic articles In this area are

Epstein [1), Chernoff [2], and Bessler, Chernoff, and Marshall

E3J. A standard reference is Mann, Schafer, and Singpurwalla

[] Chapter 9.

In an accelerated life test it is assumed that the lifetime

4 of an item being tested is a random variable with a distribution

function (o.f.) F(tge) that depends on an unknown parameter

e . Furthermore, it is assumed that the parameter e is related

to the stress s under ,hlch the test is carried out by a specified

function of the form e a w(s,a), where the unknown parameter

| determines the precise relationship between s and e.

Of central interest In the analysis of oata from accelerated

life tests is the estimation of the parameters • ano a.

There are also many interesting questions related to the design

cf these tests, sucri as (i) how many items to put on test, ,,ii)

whether to replace items when they fail, (iii; how to change

the stress s as the tests progress, ano (iv) when to stop

.he test. Our main attention in this paper will be focussea

on question (iti).
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We will consider problems in which the stress s can take

only a fixed, finite number of values. A problem of this type

is called accelerated life testing with step stress. In fact,

for simplicity, we will restrict ourselves to problems in which

s can take only two values. These values correspond to

(1) the standard environmental conditions under which an item

w'11 be used in practice, and (ii) a higher level of stress

that is fixed in advance and i1 the same for all Items to be

tested. We will assume, however, that the time at which an

itern on test Is taken out of the standard environment and put

uncer stress can be chosen by the experimenter subject to a

given cost structure. The develcpment in this paper follows

that given In [5], where these tests were called partially accelerated

life tests. All of the results that are described in this paper

without proof, are derived in (5] under somewhat more general

cc.-.- tions.

Some other articles that pertain to accelerated life testing

wltr. step stress are (6) and [7), although these articles do

not follow the Bayesian approach to be utilized here. A valuatle

sL.rvey of accelerated life testing problems from. the Bayesian

perspective is given by Mazzuchi and Singpurwalla [8].

We shall denote the lifetime of an item tested under the

stan.-ard condItions by the random variable T, and we shall

let F(tle) denote the d.f. of T. The value of the parameter

Si• unknowi. ano it to be estimated. Suppose that if the item

has not failec by some specified time x, then it is switched
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to the higher level of stress and the test In continued until

the Item falils. We assume that the effect of this switch is

to multiply the remaining lifetime of the Item by some unknown

factor a > 0. Since the effect of switching to the higher

stress level will typically be to shorten the life of the test

Item, * will usually be less than 1. However, It Is not necessary

for us to impose this restriction on the models that we will

be using here.

To describe the model for this accelerated life test, we

shall let Y denote the total lifetime of a test item. Thus,

Y is defined by the relation

T for T < x,
Y a(- (1.1)

x + a(T-x) for T > x.

Since switching to the higher stress level can be regarded as

tampering with the ordinary life test, x Is called the tampering

point, and a Is called the tampering coefficient. This model

and an application were originally introduceo by Goal [9J.

We shall assume that an experimenter starts with a sample

of n Items and subjects them to test In the standard environment.

If item i has not failed by some prespecified time x,, then

It is put under the higher stress and the test Is continued.

If 7 would be the lifetime of Item i In the standard environment,"-i

then the total lifetime Y of item i under this step-stress



life test it Liven by (1.1). It would be possible to consider

problems in which the tampering point x for Item I Is chosen

sequentially, after the experimenter has observed whether or

not some of the other items have previously failed, but we shall

not do so In this paper.

Thus, a sample of n observations Y I'''Yn is obtained

on the random variable Y corresponding to preassigned tampering

pc.ints Xl,..., xn. If tht observed value y2  of Y i Is less

than the corresponding tampering point x,, then YI Is called

an untampered observation. Otherwise, Y1  is called a tampered

observation. In other words, an untampered observatlon comes

from a test item that failed under the standard conditions,

and a tampered observation comes from a test item that failed

after It had been switched to the higher-stress level. The statistical

problems Involved in using the model (1.1) are (1) the estimation

cf e and a for given values of the tampering points xl,*...xn

anc (ii) the choice of an optimal design for this estimation,

i.e., the selection of the best tampering points.

Tnroughout the paper we shall assume that the randow variable

7 nas an exponenti&a distribution with density

f(tle) - ee-et for t > 0 and 6 > 0. (i.2)

However, the results on optimal design to be presented here

wil be valid for a somewhat broader class of distributions.
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In Setion 2 we consider the 3ayeslan declsion-theoretlc

approach to the estimation of a when the value of 0 is known.

The results developed In that section are then used In 3ection

3 to study estimation problems In which both 0 and a are

unknown. In these sections It Is assumed that the tmpaerlng

points x 1 ,...,xn for the n items to be put on test are fixed.

In Section 4. the optimal choice of the values of x, ... Oxn

Is presented for various types of observational costs. In particular,

it is shown that for many cost functions, the optimal design

uses only the tampering points x a 0 and x a a. and the number

of observations to be taken at each of these values Is explicitly

derived.

2. Bayes estimation

In this section, we shall begin our study of the estimation

problem by assuming that the'parameter 6 has a known value,

say 9 U 6O, and that we want to estimate the unknown parameter a.

We will then use these results In the next section for the case

In which 6 is unknown.

It is convenient to work with the parameter E n '/I. rather

than directly with the parameter a itself, and we shall assume

that the prior distribution of 6 Is a gamma distribution with

parameters r ana sjO, for which the density is

g(E) 6r( exp (-r6oe) 2 'ri )
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for I > 0. These distributions form a conjugate family of

prior distributions In this problem (see (l0], Chapter 9).

in fact, If M denotes the number of tampered observations

among Yl,...,Yn, and A denotes the set of Indices ic(1,...,n)

for which Y1 Is a tampered observation, then It can be shown

([l(], p. 166) that the posterior distribution of F given

the values of xl,...,xn and Yl'...,Yn Is again "a gama distrlbuticr

with parameters r, and Sa,0, where

r,.= r + K and sa a s + I (Y1 -xI). (2.2)
I cA

If there are no tampered observations in the sample, then we

obtain no Information about the value of a and the posterior

distribution of a is the same as the prior.

Slnce 9 is a scale parameter, It is reasonable to consider

loss functions for Its estimation that are invariant under changes

ir. the units of measurement of lifetimes. The following two

less functions have this property:

T.I•,P -a•e•. - e - - . (•.3)

a-c

- 2 1 - -. 2.
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Nore generally, ve might consider a loss function of the form

L(S.B) - *k .ft(l-,)? (25S)

for some appropriate choice of the values of k and 1. For

the sake of being explicit we will restrict consideration In

this paper to the loss function L1  given by (2.3). The loss

function L for the estimation of I corresponds to the loss

function L2 for the estimation of a a 1/B.

It can be shown that if r > 2 In the prior distribution

of t, then the Bayes estimator of g with respect to the loss

function L1 will be

r,-2
IW -_- (2.6)

[More generally, • as given by (2.6) will be the Bayes estimator

whenever the data are such that r 1  r + K > P.] Furthermore,

for given tampering points x....,xn, it can be shown that

the overall Bayes risk of this estimator, calculated with respect

to the Joint marginal or predictive distribution of the observations
¥•,...,¥• I

" s

E( Eio ) . ( -1 ) . (2t7t
r.- r+M-

The expectation in (2.7) is calculated with respect to the marginal
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distribution of H, which can be found as follows:

Lot random variables •1""'•n be defined as

If If cA,

ci I if (2.8)

where AC Is the set of Indices fo(1,...,n) ror which the

observation Y is not tampered. Then C,1. t•,tn are Independent

given 6., ard

Pr(1 - 1) - Pr(T > x IN0) a exp (-a 0 X1 ). (2.9)

Since

nK* - c 1 '(2.10)

1-1

it follows that the distribution of K is that of the sur. of

Independent Bernoulli random variables, each with its own probability

o! !ucces- as given by (2.9). In the next sect.iot., when the

vale of E Is unknown, we will have to integrate this distrituticn.

over the prior distribution of i nr. order to obtain the magr-:na-!

dittribetior. of F.

:. Estimation with both parameters unknown

Suppose now that both of the parameters e and E are

.' I n this situation, a conjugate family of joint prior

distributions for E and 6 can be specified as follows:
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The conditional prior distribution of S. given s. is a gama

distribution with parameters r and so , and the marginal

prior distribution of e Is a gamma distribution with parameters

r0 and a.

Under %,jese conditions It can be shown that the Joint posterior

distribution of C and e will have this same form and can

be sanecified as follows: The conditional posterior distribution

of 6, given 6, Is a gamma distribution with parameters r 1

and s. , where r 1  and al are given by (2.2). and the posterior

distribution of 5 Is a gamma distribution with parameters

r2 and a2, where r 2  and s2 are defl.aed by

r 2 w r 0 + n - K and s 2 V so4 + I x I + I Y• (3.1)
ICA JcA

if all the observations are untampered, thern K a 0, sl a ,
n

ana s s3 0 + Y1 6 If all the observations are tamperec,
i=1 n n

then K * n, s s 11 (Y¥ - xi), and a. sO 3 P1.

It should be noted that this posterior distribution does

rnc, aepenc or. the values of the tampering point! corresponadin"

to the untampered observations. Hence, It does not depend orn

"the method by which these points were chosen. Furthermore,

it is interesting to note that the contribution of each tampered

cbse.vatio.n Y, to the posterior dis3tribution of E is tr.e sa.me as

t.•& of an observation censorec at x In an ordinary life

test based on the exponential distribution.
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Now consider the estimation of S In this problem: The

same loss functions (2.3), (2.4), and (2.5) that were discussed

for the estimation of A will also be appropriate for the estimation

of 0. In particular, %e shall again use the loss function

L, given by (2.3)a so

,.( , 3 ( j - 1) . (3.. )

It follows that If r 0 > 2 in the prior distribution of E,

thern the Bayes estimator will be

r 2-2(3 

)
r2

where r. and 32 are given by (3.1). Furthermore, the Bayes

risk of this estimator will be

E(-'. .E

r ., • r C n-T.'-1

where the expectat~on Ir. (3.L) Ir calculated w"t,. r;etpe:t tc

t..e nar-iral (precdctive) distr.iution of M.

Next, we turn. to the estimation of E ir. i h±r probler.

where e is unknown. It can be shown that with respect tc

the s&re loss function L. as before, as given. ty (2.3), the

Bayes estimator now becomes



1a r

z¾l-2 $ 2

It is interesting to note that this estimator is the same as

the estimator 8 given in (2.6) when the value of 0 was known,

except tVat the known value 0 - 00 is now replaced in that

expression by the estimate

r2+1 E(e 2) (3.6)
S.2 E'(e)

where the symbol E' in (3.6) indicates that the expectation

is to be calculated with respect to the posterior distribution

of e.

It can be shown that the Bayes risk of the. estimator

given by (3.5) is

E (rl-l)_ (+) - E E: (r+t-1i)l] (3.7,

As before, the expectation in (3.7) is to be calculated with

respect to the marginal distribution of Y..

Finally, suppose that we are interestec in estimating both

E anc e in this problc:,, and that the loss function is of

the form

L(ý,J;B'e) = Al Li(LB) + )X2 L 1(,e),) (3.8)
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where AI and A2 are given positive constants. Then the Bayes

estimators R and S are again as given in (3.5) and (3.3),

and the overall Bayes risk 0 is simply

A t[iisk given by (3.7)] + A2 [Risk given by (3.4)J. (3.9)

4. Optimal design

Suppose now that the experimenter has to pay a cost for

each item tested. In general, this cost will depend on the

tampering point x and on whether or not the observation Is

actually tamperea. Under these conditions, the experimenter

desires to choose an optimal design for the estimation of the

unknown parameters B and 6 by choosing the n tampering

points X1 ,...,xn so that the total risk (the sum of the Bayes

risk due to estimation error and the expected cost of using

the tampering points) is a minimum.

In many problems of optimal experimental design, it is

cifficult to obtain a closed-form solution to this minimization

problem unless a simple closed-form expression for the Bayes

risk ý given by (3-9) is available. In our problem, such

an expression is not available because it is difficult to determine

the expectations in (3.4) and (3.7) as explicit functions cf

X,....,x . in this section, we will show that despite this

difficulty, we can obtain simple, explicit optimal designs for

various types of tamperinE costs. The basic property that we
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shall use is that the Bayes risk p Is of the form

p - E[h(M)] , (4.1)

where, h(M) is an explicit, known function of M. Indeed,

It follows from (3.9) that

Mr.) a I x(r+ro+n-l) +"h()* a 1  + .2 (L.2)
ro0+n-K+l I r~m-1

Suppose first, as a simple example, that the cost of an

otservation depends only on whether or not it turns out to be

tampered, and not on the value of the tampering point. Suppose

that the cost of each untampered observation is v 1  0 and

the cost of each tampered observationI is v2 Ž O. Then for

any tampering points Xl...AXn, the cost of the n observations

will be

c(M) * (n-:)vI + Mv 2 a nvj + (v 2 Vl). (

Thus, the total risk R is given by

R a E[h(1.) + c(M)] . ( .. )

In (4.4) we have represented R as the expectation of

ar. explicitly known function of F. Therefore, among all possitle



distributions of Ma1 R will be minimized when the distribution

of Mh assigns probability 1 to the Integer mo that actually

minimizes the function h(M) + c(M); i.e.,

h(zn0) + c(m 0) 0 min Ch(i) + c(i)) Ae5
0,,.. .,

Can this degenerate distribution of V, actually be obtained

from some particular choice of the tampering points x1s..., In

The answer is yes: We choose in0 tampering points at x a 0,

so that these observations are tampered immediately, and the

rema~ining n -mo tampering points at x a -, so that these

observations are never tampered. Thus, under the optimal design

the experimenter never leaves to chance whether or not an observation~

will be tampered.

T'he cost structure we have just considered Is random in

the sense that the cost of an observation is not fixed in advance

but depends on whether or not the observation turns out to be

tampered. We shall now assume that the cost c(x) of each observatior.

is fixed in advance and depenids only on the tarpering point

x. For the optimal design, we need to choose the tampering

pcilnts to m..~ Oinimir.ze

r.n
-~ ~ I~U:I c,'x~).( 4
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For any given tazqering point xO let

p(x) a E[Pr(T > xle)] - E(e-xe) , (4.7)

where the expectation is evaluated with respect to the prior

distribution of e. In other words, p(x) Is the prior probability

that an observation will be tampered when the tampering point
n

x is used. It follows that E(M) r t P(x ).
1-1

Now suppose that the cost function c(x) has the special

form

c(x) = a + bp(x) . (4.8)

Then R, as given by (41.6), reduces

R - E~h(M) + na + bM)] (4.9

"It .folluws that the optimal design In this probler, will be the

same as that based on the risk function in the preceoing examp.le

defined by (4.3) and (4.4), with a - v* and t a v2-v-.

In both the first example that we presented in this section,

in which the cost of an observation was random, and in the second

example, in which the cost of an observation was fixed, the

optimal design was found to use only the two tarpering points

x a 0 and x - -. In fact, as we will now explain, there is
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a wide class of cost functions c() W or which the optimal design

has this property.

For any prior distribution of S on the parameter space

0 < 0 < M9 the function p(x) defined by (4.T) will be a strictly

decreasing function of x for x > 0. Hence, any cost function

c(x) can be expressed in the form

c(x) a cOtp(x)J,

where cv(p) Is defined for 0 < p I 1 and has the Interpretation

that It is the cost of choosing a tampering point x for which

the probability that the resulting observation will be tampered

is p. Suppose now that the cost function c(x) yields a function

c*(p) satisfying the following condition:

c*(p) > pc(1) + (1-p)c*(O) for 0 < p < 1 . (4.11)

Then it can be shown that the total risk is minimized by a design

thai uses only the tampering points x - 0 and z - -. it is

a corollary of this result that if c*(p) is a concave function

on the interval C e p < 1, then there is an optimal design

using only the points x - 0 and x =.

In conclusion, the special nature of the particular examples

presented In this section should be emphasized. They are special

because in each case the optimal design can be determined simply



from4 the function h(N), without any further consideration of

the predictive distribution of N. For more general cost functions,

this avenue of solution will not be open, and the optimal designs

will Involve tampering points x with 0 Cx .
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